

Further Maths Daily Questions - Week 1 Monday 2 Prove, by induction, $\sum_{r=1}^{n} r^2 - 3r = \frac{1}{3}(n-4)n(n+1)$

Further Maths Daily Questions - Week 1 Tuesday 1 For two $n \times n$ non-singular matrices $\bf A$ and $\bf B$, prove that $({\bf AB})^{-1} = {\bf B}^{-1}{\bf A}^{-1}$.
Dr Benisar Maths

Further Maths Daily Questions - Week 1 Tuesday 2 Let α, β and γ be roots of $p(x) = x^3 + x^2 - 17x + 15$. Find:

a)
$$\alpha^2 + \beta^2 + \gamma^2$$
,

a)
$$\alpha^2 + \beta^2 + \gamma^2$$
,
b) $\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$,

the polynomial (with integer coefficients) which has roots $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$. c)

Further Maths Daily Questions - Week 1 Wednesday 1

- a) Find the vector equation, \mathbf{r}_1 , of the line, l_1 which passes through A(1,3,-2) and B(1,4,4).
- and B(1,4,4). **b)** The line l_1 intersects the line l_2 , with equation $\mathbf{r}_2 = \begin{pmatrix} -13 \\ 2 \\ 12 \end{pmatrix} + \mu \begin{pmatrix} 7 \\ 0 \\ -10 \end{pmatrix}$ at the point P. Find the coordinates of P.

Further Maths Daily Questions - Week 1 Wednesday 2

The point P(x, y) is rotated 90° anticlockwise about the origin and then reflected in the line y = x to give the coordinate Q(3, -4).

- a) Find the single matrix which represents the combined transformation.
- **b)** Find the coordinates of P.

Further Maths Daily Questions - Week 1 Thursday 1 Sketch, on an Argand diagram, the loci |z| = 3 and |z - 1| = 2. Find the coordinates of any points where these two loci intersect. b)

Further Maths Daily Questions - Week 1 Thursday 2

Find all invariant lines of the form y = mx + c for the transformation that is

represented by the matrix $\mathbf{M} = \begin{pmatrix} -\frac{3}{5} & \frac{4}{5} \\ \frac{4}{5} & \frac{3}{5} \end{pmatrix}$.

Further Maths Daily Questions - Week 1 Friday 1 Using standard results find an expression for the sum $\sum_{r=1}^{n} 3r^3 + 2r^2 + 13$

Further Maths Daily Questions - Week 1 Friday 2 For which values of a is the matrix $\mathbf{M} = \begin{pmatrix} 1+a & 2 \\ 3-a & 3a \end{pmatrix}$ singular?